
Journal of Engineering Mathematics 42: 65–90, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

Acoustically generated unsteady vorticity field in a long narrow
cylinder with sidewall injection

KADIR KIRKKOPRU1, DAVID R. KASSOY2, QING ZHAO3 and PETER L. STAAB4

1Department of Mechanical Engineering, Istanbul Technical University,Gumussuyu, Istanbul, Turkey
2Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309, U.S.A.
3AVAYA Communications, Westminster, CO 80234, U.S.A.
4Department of Mathematics, Colorado College, Colorado Springs, CO 80903, U.S.A.

Received 3 May 2000; accepted in revised form 10 September 2001

Abstract. Asymptotic and computational analyses of a well-posed initial-boundary-value problem are used to
describe the time history of co-existing acoustic and rotational velocity disturbances in a long, narrow cylinder
with uniform steady sidewall mass injection. Transient planar pressure disturbances prescribed on the open exit
plane of the cylinder are the source of acoustic disturbances in the axisymmetric flow. Both the asymptotic and
numerical solutions describe the nonlinear aspects of the flow interactions. The full computational results are
compared favorably with those of the asymptotic study to show that; (1) transient vorticity is generated near the
injection surface and is transported into the cylinder by the radial velocity component of the flow field, (2) at
any sufficiently small value of time, a well defined front separates the fluid containing transient vorticity from
a flow field in the interior of the cylinder containing a much smaller amplitude vorticity and, (3) at sufficiently
large values of time, vorticity is present throughout the cylinder. In addition, the analytically derived acoustic
solution obtained from the asymptotic analysis is used to show that the present numerical solution and all earlier
studies of similar problems are missing travelling waves (eigenfunctions) which should be present in a complete
mathematical solution of the defined initial-boundary-value problem.

Key words: asymptotics, computational, cylinder, low-Mach-number flow, sidewall mass addition.

1. Introduction

This modeling study elucidates some of the fundamental properties of co-existing, interacting
acoustic and vorticity disturbances in a high-Reynolds-number, low-Mach-number flow. The
geometrical context is a long, relatively narrow cylinder with one open end and uniform,
steady mass injection from the porous sidewall. An acoustic field, induced by an imposed
pressure transient on the exit plane, interacts with the injected fluid to create intense, transient
vorticity on the porous surface. Subsequently, radial and axial convection combine with radial
diffusion to distribute the vorticity throughout the cylinder.

The flow configuration chosen is an idealization of that found in a solid rocket motor.
Sidewall mass injection is used to model the normal velocity of gaseous products generated
by combustion of gasified propellant in an extremely thin reaction zone adjacent to the de-
grading solid material. The exit-plane pressure transient is used to disturb the flow system in a
deterministic way. This application provides a useful testbed for studying the time-dependent
dynamics of mixed irrotational and rotational flow fields. The modeling approach and the
results may be useful in other applications where acoustic disturbances are present in transient
shear flows and, particularly, in turbulent flows.
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Mathematical modeling of the flow system is developed in terms of an initial-boundary
value problem (IBVP), derived from the nondimensionalized Navier–Stokes equations with
relevant boundary and initial conditions. Asymptotic and computational methods are used to
derive general transient solutions that describe the evolution of the flow field. Comparisons
of the analytical and numerical solutions are used to identify limitations in past and present
computational predictions of the flow-field pressure transients.

A variety of related computational, quasi-analytical and experimental studies have been
carried out in the past to describe these phenomena. Vuillot and Avalon [1] provide a numeri-
cal solution to the compressible Navier–Stokes equations in a two-dimensional, long, narrow
channel (the ratio of length to half height δ = 10) with uniform sidewall mass injection. A
harmonic pressure transient, 5% of the mean pressure, is imposed at the exit plane to create
an acoustic field in the cylinder. The flow Reynolds number based on the characteristic axial
velocity and the channel length is Re ≈ 3 × 103 and the characteristic axial Mach number
is M ≈ 0·1. Solutions for time scales measured by the axial acoustic time, t ′a (the ratio of
the length to the characteristic acoustic speed), predict that unsteady vorticity is confined
to a region between the sidewall and half the cylinder radius. The computational acoustic
pressure field is harmonic at the forced frequency. Vuillot [23] re-emphasizes the importance
of vorticity in these unsteady injected internal flows.

Later, Smith et al. [2] do a numerical simulation of Brown et al.’s [3, 4] cold flow experi-
ments in a long cylinder (δ = 38·4) with an attached short nozzle, based on the compressible
Navier-Stokes equations. The steady flow due to uniform sidewall injection (characteristic
axial Mach number M ≈ 0·1 and corresponding Reynolds number based on the cylinder
length Re ≈ 3 × 106) is disturbed by imposed harmonic mass injection from the wall at a
single location just before the nozzle. The predicted transient acoustic pressure amplitude is
0·5% of the mean pressure and composed only of the forced mode. The essential features of
the rotational unsteady flow, observed by Brown et al. [3, 4], are predicted.

Tseng et al. [5] use the Navier-Stokes equations to develop a computational solution for
uniform injected flow in a channel, which includes the effect of a thin classical flame located
adjacent to the sidewall. A 2% harmonic pressure disturbance is applied on either an exit plane
or endwall boundary to generate the acoustic field. In order to resolve the flame, nonuniform
gridding is clustered near the injecting wall of a large aspect ratio (δ = 20) planar chamber
without a nozzle. Time-averaged results are used to show that vorticity is present only very
close to the wall where the flame is located.

Roh and Yang [6] do similar computations for a system with double-base solid-propellant
combustion. Longer run times, but still on the t ′a scale, and improved radial spatial resolution
lead to the appearance of vorticity through 75% of the half height of the rectangular chamber.

Unlike the previously described studies based on a uniform distribution of injected fluid
from the sidewall, Kirkkopru et al. [7] develop an initial-value numerical solution for the
flow in a cylinder with transient, spatially distributed mass injection. In this case, the unsteady
injection is the direct source of an acoustic disturbance field in the cylinder. Transient solutions
are employed to show how unsteady vorticity generated along the sidewall convects away from
the wall, eventually filling the entire cylinder. Here again, the acoustic pressure field contains
only the forcing frequency of the imposed spatially varying harmonic sidewall fluid injection.
In contrast, the analogous, formal acoustic solution in the IBVP given by Staab et al. [8],
indicates that non-dissipating eigenfunctions should be present on the time scales of interest.

Flandro [9] formulates an innovative linear analytical theory based on an inviscid equation,
to describe the spatial distribution of unsteady vorticity arising in an acoustic boundary layer.
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The assumed acoustic pressure field is quasi-steady and infinitesimally small in the linear
stability formulation employed. A systematic evaluation of the asymptotic method used to
construct the model shows that the amplitude of the pressure disturbance is limited to less
than 0·1% of the base value, for the parameters chosen.

Flandro and Roach [10] develop an analytical model to describe the experiments of Brown
et al. [3, 4], which can be compared with the computational study by Smith et al. [2]. The
model has the inherent limitations of the earlier work by Flandro [9]. Widespread small-
amplitude unsteady vorticity is predicted. Flandro [11] uses a related formulation to develop a
theory where co-existing vorticity and acoustics are present throughout the flow field. The
steady, inviscid rotational Culick [12] solution, associated with a uniform injection Mach
number, Mb � 1, is disturbed by a smaller O(ε) assumed harmonic acoustic velocity (and
pressure). A linear stability approach is used to derive an inviscid, linear small-disturbance
equation that describes the rotational flow field with an assumed quasi-steady time variation.
This model retains viscosity, which has a minor effect on the vorticity distribution, given the
cited parameter values.

Majdalani and Van Moorhem [13] use the basic small-disturbance, linear stability theory
of Flandro [11] to describe stronger effects of viscosity on the unsteady vorticity. The in-
finitesimally small-pressure disturbance is assumed to be quasi-steady along with all of the
other dependent-variable responses. Related modeling is given by Majdalani et al. [14] and
Majdalani [15] who have compared their results with those of Flandro [11], and Majdalani
and Van Moorhem [13].

Casalis et al. [24] and Avalon et al. [25] have included rotational disturbances in a purely
hydrodynamic stability study of planar flow in a channel with steady sidewall injection. Non-
parallel stability theory is used to do a linear analysis of the steady solution. Results are sen-
sitive to the transverse velocity component of the steady flow and demonstrate the importance
of non-parallel effects.

It should be stressed that all of the previously cited analytical studies employ some form of
linear stability analysis for infinitesimal disturbances in which the quasi-steady acoustic field
is assumed, rather than being calculated from some prescribed boundary disturbances. The
problem formulation of Kassoy and co-workers [7, 8, 16, 17] is more closely related to the
IBVP approach used in the computational work mentioned earlier. They formulate an initial-
boundary-value theory for a weakly nonlinear and viscous flow process where relatively larger
transients are introduced by imposing significant disturbances on a boundary. The acoustic
field is calculated, rather than assumed. Transient variations in axial velocity are as large in
amplitude as the steady Culick [12] value, which exists when the transient boundary distur-
bances are absent and only a uniform steady injection from the sidewall is present. Typical
pressure transients in the asymptotic analyses are up to about 10% of the base value, nearly a
hundred times larger than that in the stability-based theories.

Staab et al. [8] use a formal multiple-scale asymptotic method to study an internal axisym-
metric unsteady flow driven by a time-dependent injection distribution along the sidewall of
the cylinder. A balance of nonlinear convection and viscous diffusion controls the evolution
of the unsteady vorticity distribution in the cylinder. A comparison of asymptotic results for
this transient sidewall injection initial-boundary-value problem with those from Kirkkopru
et al.’s [7] numerics given in Figure 8 in [8] shows quite good quantitative agreement for the
instantaneous radial variation of the rotational axial velocity component. However, notable
differences near the sidewall are attributed to the missing eigenfunction pressure response in
the full numerical computations.
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The present work employs computational and asymptotic analyses to develop transient
solutions for flow in a cylinder with uniform wall injection and a prescribed small, but finite,
pressure disturbance on the exit plane, similar to that used by Vuillot and Avalon [1]. The
disturbance amplitude is compatible with a nonlinear treatment of the flow process. Results
are obtained for axial Reynolds numbers in the range 3 × 104 − 3 × 105 and for axial Mach
numbers in the range 2 × 10−2 − 10−1. Unlike earlier computational studies [1, 2, 5, 6] of
this type of problem, radial grid distributions are based on the scaling results from asymptotic
studies [8, 16, 17]. As a result, small wave-length phenomena in the numerical solutions are
more accurately resolved in the core of the cylinder than was possible in the past. The MacCor-
mack explicit predictor-corrector method [18] is used to obtain solutions to the compressible
Navier–Stokes equations in which demonstrably small axial viscous stresses and conduction
terms are neglected. Concepts derived from asymptotic studies [8, 16, 17] are used to split
the numerical axial velocity into separate steady, acoustic and transient rotational compo-
nents. Spatially resolved, time-dependent results are used to describe the transient vorticity
distribution in the entire cylinder.

The asymptotic method of Zhao et al. [17] and Staab et al. [8] features the use of limit
process expansions and multiple-scale methods based on a single limit, M → 0 where Re and
δ are defined as specific functions of M, so that the order of each term in the Navier–Stokes
equations is clearly defined. The reduced equations are independent of small parameters. A
formal, standard multiple-scale approach is used because physical processes occur simultane-
ously on two different radial leghth scales, namely the radius of the cylinder and an O(M)

smaller length. First, a linear acoustic solution, driven by the imposed, finite, exit-plane har-
monic pressure disturbance is derived. The acoustic pressure field is shown to contain an
infinite number of eigenfunctions in addition to the forced mode, for the acoustic time scales
considered in the study. Secondly, a weakly nonlinear convection-diffusion equation is solved
to obtain the rotational component of the axial velocity. Unlike the linear stability theories [9–
11, 13–15], the amplitude of the transient axial velocity (acoustic + rotational components) is
the same order of magnitude as the steady Culick [12] profile resulting from uniform injection
from the sidewall.

A comparison of the fully computational solutions with those found from the multiple-
scale, asymptotic study confirms many of the characteristic features of the flow field discussed
here and in the References 8, 16 and 17. However, the comparison also illuminates a basic
deficiency in previous computational solutions cited above, as well as that given here. Each
predicts only the forced harmonic component of the acoustic pressure field, regardless of the
source of forcing. In contrast, all of the asymptotic analyses demonstrate that nondissipat-
ing eigenfrequency modes are present in the acoustic field, in addition to the forced mode.
The sources and consequences of this difference, not previously noted in the literature, are
considered in Sections 3–5.

The work presented here provides a systematic, nonlinear mathematical analysis of rela-
tively large, co-existing acoustic and rotational flow-field disturbances. Asymptotic and com-
putational methods have been employed to develop transient solutions to a well-posed IBVP.
Analytical insights have been used to facilitate the computational study and understand its
limitations. The results enable one to understand the source and evolution of vorticity in the
system, its ultimate distribution and the length scales on which it is important. These insights
represent the fundamental contribution of the present work.
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2. Mathematical model

An initial-boundary-value problem (IBVP) is defined in terms of the cylindrical, axisymmet-
ric, laminar, compressible Navier–Stokes equations, written in nondimensional conservative
form as;

∂q

∂t
+ ∂e

∂x
+ ∂f

∂r
+ h

r
= 0 (1)

where

q =



ρ

ET

ρu

ρv


 , e =




Mρu

M[ET + (γ − 1)p]u
Mρu2 + 1

γM
p

Mρuv


 ,

f =




Mρv

M[ET + (γ − 1)p]v − γMδ2

RePr T ,r

Mρuv − Mδ2

Re u,r

Mρv2 + δ2

γM
p


 , h =




Mρv

M[ET + (γ − 1)p]v − γMδ2

RePr T ,r

Mρuv − Mδ2

Re u,r

Mρv2


 .

(2)

The equation of state for a perfect gas is

p = ρT . (3)

The nondimensional initial conditions are given by the steady-state values for u, v, p, ρ and
T to be calculated subject to a specified injection velocity (v = −1), temperature (T = 1)
and no-slip condition for the axial flow velocity (u = 0) on the injecting side wall at ( r = 1),
symmetry conditions at ( r = 0), an impermeable wall (u = 0) at x = 0 and a steady static
pressure condition (p = 1) at the open end x = 1. The boundary conditions for the IVBP are
the same as those for initial conditions, except the unsteady static pressure condition at the
exit plane (x = 1), p = 1 + A sin ωt , where ω is the dimensionless angular frequency and A
is the amplitude of the pressure oscillation.

Nondimensional variables, defined in terms of primed dimensional quantities, are given by

x = x′/L′, r = r ′/R′, u = u′/U ′
R, v = v′/V ′

R, p = p′/p′
0,

ρ = ρ′/ρ′
0, T = T ′/T ′

0, t = t ′/t ′a, Cv = C ′
v/C

′
v0. (4)

Characteristic length scales for the axial and radial directions are chosen to be the length of
the tube L′ and the radius of the tube R′, respectively. The characteristic sidewall injection
speed of the fluid V ′

R is related to the characteristic mean axial speed U ′
R through the global

mass conservation relationship U ′
R = δV ′

R, where δ = L′/R′ is the aspect ratio of the tube.
The reference value p′

0 is the initial static pressure in the cylinder, while the analogous density
and temperature values ρ′

0 and T ′
0, respectively, represent properties of the injected fluid. Time

is nondimensionalized with respect to the tube axial acoustic time t ′a = L′/a′
0, where a′

0 =
(γp′

0/ρ
′
0)

1/2 is the characteristic speed of sound. Here, the ratio of specific heats γ = 1·4. The
viscosity, specific heats and conductivity are treated as constants in these calculations because
temperature variations are very small.
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The Reynolds number, the Prandtl number and the mean axial flow Mach number, respec-
tively, are defined by

Re = ρ′
0U

′
RL

′

µ′
0

, Pr = µ′
0C

′
po

k′
o

, M = U ′
R

a′
o

. (5)

Typical parameter values are Re = O(105 − 106), Pr = O(1), M = O(10−2 − 10−1) and
δ = O(10).

Finally,

ET = ρCvT + γ(γ − 1)M2ρ

[
u2 + (v/δ)2

]
2

(6)

represents the nondimensional form of the total energy of the fluid.
The Navier–Stokes equations are simplified by ignoring the axial viscous stress and the

axial conduction. The nondimensionalization defined in (4), and used by Staab et al. [8]
and Zhao et al. [17], can be used to show that these small transport effects are O(M/Re)
compared to the O(1) terms in (2). Given the parameter ranges specified below (5), the
magnitude of M/Re can be no larger than O(10−6). This suggests that there is little risk
in simplifying the basic equation model. The computation time for the simplified equations is
reduced drastically without sacrificing the flow physics. Furthermore, the dissipative effects
of the remaining transport terms are sufficient to avoid the need for artificial damping terms.
This approximation has been used succesfully in earlier related work [7].

The IBVP defined in (1)–(3) will be solved using asymptotic methods based on the limit
M → 0 with Re → ∞ and then with a computational approach based on the MacCormack
explicit predictor-corrector scheme [18]. Scaling and other insights about the physical charac-
teristics of the flow obtained from the analysis are used to improve the resolution of the latter
and to interpret the numerical results.

The solution strategies for both the analysis and the compuation are quite similar. First, a
steady-state solution for velocity and pressure is obtained in the absence of a time-dependent
pressure oscillation on the exit plane. Then, the steady flow is disturbed by the exit-plane
disturbance given below (3) and a complete initial-value problem is solved. The transient
velocity response is split into irrotational and rotational fields in order to distinguish acoustic
transients and those associated with vorticity. The time history of the spatial distributions of
the acoustic velocity and pressure, as well as the rotational velocity and the related vorticity,
are obtained from each solution method, interpreted and compared.

3. Asymptotic formulation

Asymptotic analysis of the IBVP defined by (1)–(3) and associated initial and boundary con-
ditions is based on the methods described in detail by Zhao et al. [17]. The summary provided
below will enable the reader to understand the formulation of the acoustic problem and the
subsequent development of the submodel describing the origin, transport and evolution of
vorticity.

Asymptotic expansions for the dependent variables, valid in the limit M → 0, are written
as

u(x, r, t) ∼ uS(x, r) +
∑
n=0

Mnun(x, r, t), (7)
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v(x, r, t) ∼ vS(x, r) +
∑
n=0

Mnvn(x, r, t), (8)

(p, ρ, T ) ∼ 1 + M
∑
n=0

Mn(Pn,Rn, θn), (9)

where, uS = πx cos
[
(π/2) r2

]
and vS = −(1/r) sin

[
(π/2) r2

]
represent steady rotational

solutions to the Euler equations [12, 26]. The subscript n labels time-dependent terms in the
expansions. It should be noted that the largest time-dependent velocity term u0, a result of the
O(M) pressure disturbance on the exit plane, is of the same order of magnitude as the steady
contribution uS . It is implicit in the asymptotic analysis that the large aspect ratio is defined
by Mδ = O(1).

The early asymptotic study by Zhao and Kassoy [16], later improvements by Zhao et al.
[17] and the computational study by Kirkkopru et al. [7] demonstrate that two distinct radial
length scales are needed to fully resolve the flow dynamics. Important radial gradients of the
axial velocity occur simultaneously on both the scale of the cylinder radius and a much shorter
scale associated with the radial distance traveled by an injected fluid particle on the acoustic
time scale. In mathematical terms, a multiple-scale analysis is carried out in the variables r1

and r2 defined by

r1 = 1 − r, r2 =
∫ r1

0

1

−MvS(σ)
dσ, (10)

where the latter of (10) is an integral representation of the shorter length scale. The mathemat-
ical consequence is that several partial differential equations are simplified by the removal of
the variable coefficient vS(r1). In addition, the integral has a physical interpretation because it
also defines the nondimensional time required by an injected fluid particle to move from the
wall at r1 = 0 to any specified radial location r1 > 0. It should be noted that r2 is unbounded
in the limit r1 → 1 because of the asymptotic behavior of vS near the centerline (r1 = 1) of
the cylinder.

Variable splitting of Lagerstrom [20, pp. 90–92] is used in (7)–(9) to separate irrotational
and rotational components of the velocity fields. Velocities and the pressure approximations
relevant to the present work can be written as

u0(x, r, t) = u0P (x, t) + u0V (x, t, r1, r2),

u1(x, r, t) = u1P (x, t) + u1V (x, t, r1, r2), (11)

v0 = 0, P0 = P0(x, t),

where the dependence of rotational velocity components on the multiple length scales r1 and
r2 are shown. The pressure field is independent of the radial variable, which is a consequence
of the large aspect ratio condition specified previously.

The acoustic variables u0P and P0 are described by

∂2P0

∂t2
= ∂2P0

∂x2
,

∂u0P

∂t
= −1

γ

∂P0

∂x
, (12, 13)

which must satisfy the boundary and initial conditions

P0,x(x = 0, t) = 0, P0(x = 1, t) = A/M sin ωt for t > 0
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P0(x, 0) = P0,t (x, 0) = u0P (x, 0) = 0 for t = 0, (14)

where A = MA∗.
Nonresonant solutions to the acoustic equations

P0(x, t) = A∗ sin ωt + A∗
∞∑
n=0

(−1)n
2ω

λ2
n − ω2

(
− sin λnt + ω

λn

sin ωt

)
cos λnx,

u0P (x, t) = A∗

γ

∞∑
n=0

(−1)n
2ω

λ2
n − ω2

(cos λnt − cos ωt) sin λnx, (15)

are composites of standing waves responding at the forcing frequency ω and traveling waves
denoted by eigenvalues, λn = (n + 1/2)π �= ω. The eigenfunctions in (15) are a characteris-
tic feature of solutions obtained from an asymptotic formulation of the internal flow problem
with sidewall mass addition [8, 17]. Analogous computational solutions, carried out on the
same time scale, contain only the forced modes [1, 2, 5–7]. This apparent deficiency in the
numerical results is considered in a later section.

The rotational component of the axial velocity transient, u0V , is described initially by a
linear first-order wave equation;

∂u0V

∂t
+ ∂u0V

∂r2
= 0 (16)

and the no-slip boundary condition at the side wall r1 = r2 = 0:

u0V = −u0P (x, t). (17)

Conceptually, the boundary conditions show how the acoustic disturbance is a driver for the
rotational axial velocity field. Only a partial solution can be obtained because of the multiple-
scale character of the analysis;

u0V (x, t
∗, r1 = 0) = 0 for t∗ ≤ 0,

u0V (x, t
∗, r1 = 0) = −u0P (t

∗, x) for t∗ > 0, (18)

where t∗ = t − r2 is a characteristic of the wave equation. The integral transformation in (10)
can be used to show that the lines move radially at the local value of the steady radial velocity,
vS(r1) defined below (9).

Equation (18) demonstrates that the u0V solution is preserved on characteristic lines t∗ =
constant. It varies from the wall value defined in (18) (t∗ = t) to zero at the front location
t∗ = 0. At the latter location, r2F = t , (10) can be used to find the value of the original
nondimensional radial variable;

rF =
[

4

π
tan−1

(
e−πMt

)]1/2

, (19)

where Mt = t ′/(L′/U ′
R) represents the nondimensional time defined with respect to the char-

acteristic axial flow time in the cylinder. For small elapsed times, Mt � 1, rF = 1−Mt+· · ·,
implying that the front moves at the constant wall injection speed. When the elapsed time is
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large, Mt � 1, rF → 0, showing that the front location only asymptotes to the centerline of
the cylinder as the value of vS below (9) aymptotes to zero.

Equations (13), (16), and (14) can be combined to show that on the wall, r1 = r2 = 0,

∂u0V

∂r2
= −1

γ

∂P0

∂x
, (20)

which shows that the vorticity, represented by the radial gradient of u0V , is created on the
boundary by an interaction between the injected fluid and the axial pressure gradient arising
from the time-dependent component of the pressure oscillation at the exit plane. From a
conceptual perspective, (20) shows that any acoustic disturbance, represented by the axial
pressure gradient, will be the source of vorticity. Thus, the result in (15), arising from the
model exit-plane boundary condition can be replaced by any other acoustic solution relevant
to a specific geometrical configuration.

The multiple-scale analysis is extended by finding the wave equation for u1V ;

∂u1V

∂t
+ ∂u1V

∂r2
= N1, (21)

where N1 is a nonlinear function of u0V and other lower-order dependent variables and explic-
itly contains viscous terms. The appearence of the latter at this order of the analysis requires
the parameter relationship, δ2/Re M2 = O(1). When combined with the aforementioned
large-aspect-ratio condition in Mδ = O(1), it follows that Re = O(M−4) � 1 in the
small-Mach-number limit.

The particular solution to (21), u1Vp(x, t
∗, r1, r2), will contain secular terms in t∗, unless

specific terms in N1 are suppressed. It follows that a complete solution for u0V (x, t, r1, r2) is
described by

0 = δ2

Re M2

1

v2
S

∂2u0V

∂r2
2

− ∂

∂x

[
u0V

(
1

2
u0V + uS

)]
+ vS

∂u0V

∂r1
, (22)

the initial condition in (18) and the boundary conditions

u0V (0, r1, r2, t) = 0,
∂u0V

∂r2
(x, r1 → 1, r2 → ∞, t) = 0. (23)

Equation (22) is a nonlinear convection-diffusion equation that defines the properties of
u0V at time t , in the region between the wall and the vicinity of the front rF = t , 0 ≤ r2 ≈ t =
rF . The solution describes how vorticity created at the wall in (20) is convected axially, and
radially with respect to the r1 variable, while being diffused with respect to the r2 variable.
The method of lines is used to obtain a solution to the IBVP defined by (22) and the associated
initial and boundary conditions.

It is worthwhile to note that the axial velocity transient, u0P+u0V , arising from the imposed
exit-plane O(M) pressure disturbance is of the same order of magnitude as uS in (7). In
contrast, the linear stability studies in the References [9, 11, 13–15] describe axial velocity
transients that are very small compared to the steady Culick [12] value.
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Figure 1. Computational domain and boundary conditions.

4. Computational formulation

The IBVP defined by (1–3) and associated initial and boundary conditions is solved by use of
the MacCormack explicit, predictor-corrector scheme [18].

qi,j = qni,j − 't

'x
(eni+1,j − eni,j ) − 't

'r
(f n

i,j+1 − f n
i,j ) − 't

r
hni,j ,

qn+1
i,j = 1

2

[
qni,j + qi,j − 't

'x

(
ei,j − ei−1,j

) − 't

'r

(
f i,j − f i,j−1

) − 't

r
hi,j

]
. (24)

Here, the overbar denotes the predictor stage, while the superscripts n and n+ 1 represent the
known and unknown time levels, respectively, separated by 't . The subscripts i and j refer
to axial and radial directions, respectively.

The computational domain shown in Figure 1 is used to represent the axisymmetric system.
The injected fluid speed on the cylinder wall is constant. The left side of the cylinder is a closed
rigid wall and the right side is a flow exit plane, where a specific transient pressure variation
is imposed.

The aspect ratio is δ = 20 for all present computations. Grid points are equally spaced in
each direction and the radial grid size is dependent on the value of M.

4.1. STEADY-STATE COMPUTATIONS

The IBVP is first solved for the steady-state boundary conditions. Radial viscous terms are
retained so that one finds the viscous analogues to the Culick solutions defined below (9).
Retention of the radial derivatives also helps to accelerate the convergence to steady state by
providing physically meaningful damping of numerical disturbances.

A steady-state flow solution is required as an initial condition for the transient-flow compu-
tation. Boundary conditions include an impermeable wall at x = 0 (u = 0), a static pressure
condition at the open end x = 1 (p = 1), a specified injection velocity (v = −1), temperature
(T = 1) and no-slip condition for the axial flow speed (u = 0) on the injecting upper sidewall
at r = 1 and symmetry conditions on the lower (centerline) boundary, r = 0.
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Figure 2. Normalized steady axial velocity and steady radial velocity profiles at x = 0·025 (solid line), 0·5 (dotted
line) and 1 (dashed line) for M = 0·05 and Re = 3 × 105 .

The analytically calculated velocity profiles for incompressible, inviscid, rotational flow
in a long, narrow cylindrical tube (Culick [12]) are used as starting conditions for the steady,
compressible, viscous-flow computations. This approach leads to the final converged steady-
flow configuration in an efficient manner. In this calculation, the solution converges to a steady
state defined by the condition that the total injected mass is equal to the total exiting mass.
Thereafter, the solution is run for as much as O(10) axial acoustic times to demonstrate that
the steady-state solution is stable. Results given in Figure 2 show the steady normalized axial
velocity, uS(x, r)/uS(x, r = 0), and the radial velocity vS(x, r) profiles at different axial
locations, x = 0·025, 0·5 and 1·0, when M = 0·05 and Re = 3 × 105. Culick [12] profiles
are virtually indistinguishable from the computed profiles, thus verifying the steady computa-
tional method. This result is anticipated because a low-Mach-number analysis predicts O(M2)

differences between incompressible and compressible solutions.
A separate steady-state-flow solution is computed for each Mach number and Reynolds

number in order to minimize the introduction of unwanted noise into the unsteady computa-
tions.

4.2. UNSTEADY FLOW COMPUTATIONS

Once a converged steady-flow configuration is obtained for given M and Re, the flow is dis-
turbed by imposing a sinusoidally fluctuating pressure on the exit plane, a model boundary
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condition used previously by Vuillot and Avalon [1] and Tseng et al. [5]. The boundary
condition at the exit plane is then

x = 1; p = 1 + A sin ωt, (25)

where ω is the dimensionless angular frequency and A is the amplitude of the pressure
oscillation. The other boundary conditions are the same as those for steady flow computations.

The weakly nonlinear, asymptotic theory of Staab et al. [8] and Zhao et al. [17] employs
the condition A = O(M) which implies that the transient axial velocity field is of the same
order of magnitude as the initial steady component. In the present computations the condition
A = M is sufficient to ensure that nonlinear processes will affect the evolution of the unsteady
flow field.

The numerical code has been run approximately ten cycles (t ≈ 60) after the pressure tran-
sient at the exit plane is turned on. It has been observed that no spurious numerical oscillations
have developed.

The impact of grid size on solution accuracy has been evaluated systematically by repeating
computations for a given set of physical parameters with increasingly large axial and radial
grid point distribution. It is noted that the radial grid size is compatible with the integral trans-
formation in (10) to assure resolution of the small-scale radial gradients that characterize the
intense vorticity transient associated with u0V . Results presented in Section 5 are independent
of the grid structure to the accuracy cited.

The vorticity distribution in the flow field can be calculated by employing a numerical
analogue to the velocity splitting described in the asymptotic analysis by (7) and (11) and
used previously by Kirkkopru et al. [7]. The complete unsteady axial flow velocity is split
into three parts;

u(x, r, t) = uSC(x, r) + uP (x, t) + uV (x, r, t). (26)

Here uSC denotes the steady computational flow field which is known as an initial condi-
tion for the unsteady computations. The second component uP is the analogue to the planar
acoustic part of the flow field in (11). It is found as the difference between the unsteady
axial speed u and the steady axial speed uSC on the centerline of the tube r = 0, where the
condition uV = 0 is employed. The latter boundary condition is the numerical analogue to
the asymptotic model requirement that u0V = 0 on r = 0. This condition is derived from the
properties of (16) on the axis, and the initial condition, u0V = 0. The remaining part, uV , is the
analogue to u0V in (11). It represents the transient, rotational, nonplanar (vortical) component
of the unsteady axial flow speed, and can be used to describe the time history of the spatial
distribution of unsteady vorticity in the cylinder.

Each of the components on the right side of (26) are compressible, viscous analogues to
the terms in (7) and (11) of the previous section. For example, in the asymptotic analysis the
steady and rotational components are described by incompressible equations and the former
is inviscid as well. Similarly, the planar acoustic solution is compressible, but inviscid.

5. Discussion of results

The characteristics of the computational and asymptotic solutions and their comparison are
considered in this section. Each of the results is given a physical interpretation to learn more
about the acoustic field in the cylinder, its role in generating relatively intense transient vor-
ticity at the injection surface and about the convection and diffusion of vorticity within the
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internal flow. When appropriate, the computational results are considered in the context of
insights gained from the asymptotic formulation in Section 3. More broadly, the model results
provide a unique opportunity to study the dynamics of co-existing irrotational acoustics and
rotational vorticity of similar magnitude in a well-defined internal flow configuration.

5.1. COMPUTATIONAL RESULTS

It is noted that for all cases to be discussed below the pressure solution has been found to
be purely planar (x-dependent only), with no detectable transverse (radial) variation within
computational accuracy. For example, numerical pressure values at x = 0.5 for three radial
locations, r = 0·0, 0·5 and 1·0 are p = 0·9215026, 0·9215026 and 0·921502, respectively
when t = 30·00 for M = 0·1, Re = 3 × 104, ω = 1 and A = 0·1 . This result for δ = 20
supports the asymptotic prediction for the basic planar acoustic pressure distribution P0(x, t)

in (15).
Axial pressure gradient and pressure time-response results are given in Figures 4 and 6

at an axial location x = 0·5. It is noted that the former includes the steady, negative axial
pressure gradient associated with the steady initial flow field uSC , which has the value −0·07.
The amplitude of the transient is O(M), which is in agreement with the expansion in (9). It
is observed that the pressure change is delayed until about t = 0·5, when the first acoustic
signal originating from the exit plane, reaches the specified axial location. The startup process
during the first few cycles is not purely harmonic and may contain the eigenfunction effects
included in (15). However, the nonharmonic responses disappear quickly in the numerical
result, leaving behind only the forced frequency response. This result has been seen before in
all the generically related computational solutions [1, 2, 5–7] which have been carried out for
velocity forcing at x = 0, for mass flow forcing at the exit plane as well as for the pressure
forcing condition used in the current model.

Previous investigators have accepted the numerical results as accurate, in part because they
focus on the pressure response in real solid rocket motor, which appears to be harmonic. None
have provided the analytical acoustic solution for their specified boundary conditions in order
to make the kind of comparison that is discussed in the present work. In fact, one can obtain
the acoustic solution for each of the aforementioned IBVP’s solved by computational methods
to show that travelling-wave solutions are present. Their absence in the numerical solutions
is almost certainly due to inadequate finite-difference representation of wave reflections at
boundaries as discussed by Poinsot and Lele [28]. This point is reinforced by the recognition
that viscous damping of planar acoustic waves will occur on a time-scale t � O(102) for
the Reynolds numbers considered here [21]. In this sense physically meaningful damping
cannot annihilate the eigenfunction response during the intervals considered here. That does
not preclude the possibility that numerical dissipation is a mathematical source of damping.

Recently, Hegab and Kassoy [27] employed characteristic boundary conditions [29] that
preserve wave reflections on appropriate boundaries. The result for acoustic fields driven
by transient sidewall injection, in contrast to the exit plane disturbance used here, retains
eigenfunction responses on the acoustic time scale of the problem.

Although the eigenfunction responses cannot be reproduced by the current computational
method, it is possible to use the solution to gain useful insights into the nonlinear dynamics
of co-existing irrotational (acoustic) and rotational (vorticity) flow fields. Comparisons of the
asymptotic results, including traveling-wave responses, with those from numerics can be used
to quantify the relative impact of the eigenfunctions on the characteristics of the flow.
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Figure 3. The radial variation of the unsteady axial flow speed,uV , at x = 0·5 when t = 1·50 (solid line),
t = 10·00 (dotted line) and t = 30·00 (dashed line) for M = 0·1, δ = 20, Re = 3 × 104, ω = 1 and A = M .

The first results are for a relatively large Mach number, M = 0·1. Figure 3 shows the
radial variation of the instantaneous unsteady axial rotational flow speed uV at x = 0·5 for
three values of time subsequent to initiating the disturbance in (25) at the exit plane; t = 1·50,
10·00 and 30·00. The flow parameters, M = 0·1 and Re = 3 × 104, are associated with an
injection Mach number Mi = M/δ = 5 × 10−3. The disturbance frequency is ω = 1·0,
a non-resonant value smaller than the first natural frequency of the tube, ω1 = π/2, and
A = 0·1. One hundred and one grid points are used in the radial direction while 41 are used
for axial resolution. One observes a strong radial velocity gradient extending out about 0·15
units from the wall at t = 1·50 (solid line). This is the approximate radial distance travelled
by the injected fluid during the short time interval t = 1·50, as predicted by the asymptotic
result in (19). The velocity gradient beyond that location is O(M) smaller. As time evolves,
the strong gradient penetrates further into the flow, filling most of the cylinder by t = 30·00
(based on the numerical data itself). Equation (19) predicts that rF = 0·99 at t = 30·00 in full
agreement with the numerical results.

The spatial distribution of the rotational part of the unsteady axial flow velocity at each
time in Figure 3 may be explained in physical terms by considering the interaction between
the steady injected flow field and the planar acoustic disturbances created by the imposed
pressure transient at the exit plane. The results in Section 3 suggest that particles injected
from the sidewall (r = 1) at a specified axial location are affected by the time-response of the
axial pressure gradient shown in Figure 4. Then, they are convected radially and axially, while
acted upon by viscous diffusion on the r2-length scale, which is small with respect to radius
of the cylinder. Thus, the uV profiles in Figure 3 reflect the time history of uV generated on
the wall r = 1, as described by (20), the subsequent invariant radial convection described by
(16) and the convection-diffusion process given by (22).

Figure 5 shows the time history of uP and uV at the sidewall (r = 1) when x = 0·5
for the parameters used in Figure 3. The no-slip boundary condition applied to (26) requires
uV = −uP on the sidewall boundary. It is seen from this figure that uV = uP = 0 for t � 0·5
because the acoustic signal generated at x = 1 has not yet reached the location x = 0·5. Once



Vorticity field in a long narrow cylinder with sidewall injection 79

Figure 4. The time history of axial pressure gradient, ∂p/∂x, at x = 0·5, r = 0·9 for M = 0·1, δ = 20,
Re = 3 × 104, ω = 1 and A = M .

Figure 5. The time history of the planar part of the unsteady axial flow speed, uP (solid line) and the unsteady
vortical axial speed, uV (dashed line) on the wall at x = 0·5 for M = 0·1, δ = 20, Re = 3 × 104, ω = 1 and
A = M .

the signal arrives, uV is generated at the wall by the interaction of the acoustic disturbance
and the injected gas as predicted by (20). This is discussed in detail by Staab et al. [8] and
Zhao et al. [17]. The presence of uV = O(1) on the sidewall demonstrates conclusively that a
rotational axial velocity field is generated at the wall. Subsequently, the unsteady vorticity is
convected towards the centerline as seen in Figure 3.

Figure 7 shows the spatial distribution of uV at x = 0·5 when t = 1·50, 10·00 and 30·00
for M = 0·05 (corresponding to the weaker injection, Mi = 2·5 × 10−3) and Re = 3 × 105.
The forcing frequency is ω = 1·0 and A = 0·05. The large velocity gradient (vorticity) has
penetrated about 0·075 units into the flow at t = 1·50. At t = 10·00 the penetration distance
is about 50% of the tube radius, which agrees with the front location of rF = 0·511 from
(19). At t = 30·00 almost the entire cylinder is affected by transient vorticity. Compared
to the results in Figure 3 for M = 0·1, the spatial oscillation wavelengths in Figure 7 are
considerably smaller, as implied by the asymptotic analysis. This occurs because injected
fluid particles move a smaller radial distance in a given time interval when the wall injection
speed is reduced from Mi = 5 × 10−3 to 2·5 × 10−3. One may also observe a small decrease
in the wavelength of the oscillatory structure as the centerline is approached, which is a result
of the vanishing radial flow speed as the centerline is approached.
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Solution resolution requires 101 grid points in the radial direction 41 grid points in the axial
direction. Near the injecting wall one wavelength of the uV -spatial oscillation in Figure 7
contains approximately 35 radial grid points. Near the centerline, where the wavelength is
smaller, approximately 10–15 grid points resolve the velocity gradients.

The third case studied is for M = 0·02 (Mi = 10−3), Re = 3×105, ω = 1·0 and A = 0·02.
The results for the previous cases, M = 0·1 and M = 0·05, imply that the number of radial
grid points should be doubled for this weak injection case, so that 201 equally spaced grid
points are used to resolve the radial variation of uV . The smoother axial variations are resolved
by 41 axial grid points. Figure 8 shows the spatial variation of uV at x = 0·5 when t = 3·00,
15·00 and 30·00. In each case the region of relatively large velocity gradients is reasonably
well defined, so that one can identify how far the transient vorticity has penetrated into the
flow.

Earlier computational results are based on grid clustering near the wall [1, 2, 5, 6] with a
sparse distribution in the core. This was done to resolve an expected acoustic boundary layer
adjacent to the injection surface. It is now understood from the asymptotic analyses [8, 17]
that the injection speeds are sufficient to blow the viscous layer off the surface, so that viscous
effects are distributed and persistent throughout the flow in the cylinder. The present work
provides proper spatial resolution of the radial velocity distribution throughout the cylinder
radius by including dense grid structure all across the cylinder.

It is noted that the magnitude of the gradient increases with decreasing M (compare Fig-
ures 3, 7 and 8), so that the absolute magnitude of the unsteady vorticity generated at the wall
is much larger for small-Mach-number flows. Larger-time computations for the present IBVP
have not been carried out. However, one can conclude from the works of Zhao and Kassoy
[16], Zhao et al. [17] and Staab et al. [8] that the vorticity field will spread out towards the
axis as time increases.

Figure 9 presents the axial and radial variation of unsteady vorticity,

( = −
[
∂uV

∂r
− 1

δ2

∂ (v − vS)

∂x

]
(27)

for M = 0·02 at t = 30. The nondimensional vorticity is defined as ( = (′/
(
U ′
R/R

′), where
(′ is the dimensional vorticity. The primary contribution to ( arises from the radial gradient
of uV in (27) when δ = 20. This result agrees with the asymptotic prediction of Zhao et al.
[17]. On this scale for vorticity the front, separating relatively large transient vorticity arising
at the sidewall from the weaker variety in the core, is more sharply defined. The reduction in
amplitude of ( with distance from the sidewall occurs at all axial locations. It is also clear
from Figures 3, 7 and 8 that the magnitude of the unsteady vorticity increases with decreasing
Mach number.

The radial location of the front, rF , separating the fluid region containing large transient
vorticity from the one with much smaller vorticity associated with the steady flow conditions,
can be obtained from Figures 3, 7 and 8 and more accurately from the actual numerical data
used to generate each curve.

Table 1 shows the radial locations estimated from (19) and the asymptotic result, rF =
1 − Mt , for small values of time compared to the computational values from the three Mach
numbers discussed previously. One finds excellent agreement between the value of rF from
(19) and from the numerical results. Although rF = 1 − Mt gives good estimates near the
wall, it yields unreasonable values for r � 0·5. This comparison helps to affirm the accuracy
of the numerical solutions and in particular the calculation of uV .



Vorticity field in a long narrow cylinder with sidewall injection 81

Table 1. The radial locations of the unsteady vorti-
cal axial velocity front, rF , at different time levels for
M = 0·02, 0·05 and 0·1. The second and third columns
present the estimates from rF = 1 − Mt , valid for small
times, and (19), respectively. Results in the last column
have been found from Figures 3, 7 and 8.

Time Front locations (rF )

t rF = 1 − Mt Equation (19) Numerical

M = 0·02

3 0·94 0·94 0·93

15 0·70 0·69 0·67

30 0·40 0·44 0·44

M = 0·05

1·5 0·93 0·92 0·92

10 0·50 0·51 0·50

30 −0·50 0·11 0·10

M = 0·1
1·5 0·85 0·84 0·85

10 0·00 0·23 0·24

30 −2·00 0·01 0

Figure 6. The time history of pressure at x = 0·5 for the same parameters in Figure 5.

5.2. COMPARISONS WITH THE ASYMPTOTIC MODEL

Figures 6 and 13a show numerical and asymptotic time histories of pressure, respectively, at
the midcylinder for the parameter values M = 0·1, δ = 20, Re = 3 × 104, A = M when
ω = 1. Amplitudes of the numerical and asymptotic unsteady pressure field are of the same
order, O(M), but differ quantitatively because of the absence of eigenfunctions in the former.



82 K. Kirkkopru et al.

Figure 7. The radial variation of uV at x = 0·5 when t = 1·50 (solid line), t = 10·00 (dotted line) and t = 30·00
(dashed line) for M = 0·05, δ = 20, Re = 3 × 105, ω = 1 and A = M .

Figure 8. The radial variation of uV at x = 0·5 when t = 3·00 (solid line), t = 15·00 (dotted line) and t = 30·00
(dashed line) for M = 0·02, δ = 20, Re = 3 × 105, ω = 1 and A = M .

Figure 13b shows a comparison of numerical results from Figure 6 and the asymptotic
pressure transient as calculated from (15) by omitting the eigenfunction contribution, that
is, retaining only the forcing part in the form of sin ωt . This figure shows clearly that the
magnitude and the frequency of both pressure variations are the same, except for a slight shift
in time domain. The shift arises because the quasi-steady part of (15) cannot satisfy the initial
condition. One can conclude from this comparison that the numerical code yields the correct
forced pressure transient.

Figure 14a shows time variations of the axial acoustic velocities found from the asymp-
totic result in (15) (u0P , dotted line) and from the full numerical solutions (uP , solid line)
using (26), an approximate analogue to (7) and (11). The qualitative differences in frequency
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Figure 9. Spatial unsteady vorticity variation, (, defined in (27), throughout the cylinder at t = 30·00 for
M = 0·02.

Figure 10. Comparison of the full numerical total axial velocity, u, (solid line) and the asymptotically found u
(dotted line) at x = 0·5 for M = 0·02, δ = 20, Re = 3 × 105, ω = 1 and A = 1 at t = 3.

response and magnitude arise because the analytically derived acoustic field includes the effect
of eigenfunctions.

Figure 14b shows a comparison between the numerical acoustic velocity (uP ) and the
asymptotic acoustic velocity (u0P ) calculated from (15) by considering only the forced com-
ponent in the form of cos ωt . Agreement of the amplitudes and the frequencies demonstrates
that the acoustic velocity field response found by numerical computations provides a good
representation of the forced mode. The time shift is similar to that seen in Figure 13b.

Comparisons of full computational and asymptotic results for rotational axial velocity are
made for the case M = 0·02 discussed in the previous section. This case features significant
spatial structure in the radial direction at a given time.
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Figure 11. Similar comparison plot as in Figure 10 at t = 15.

Figure 12. Similar comparison plot as in Figure 10 at t = 30.

Figures 10–12 show a series of comparisons of numerical and asymptotic axial velocity
profiles at the axial midpoint of the cylinder, x = 0·5, for the times t = 3, t = 15 and
t = 30 when M = 0·02, Re = 3 × 105, A = M and δ = 20 at the forcing frequency ω =
1. The solid line represents the total instant axial velocity obtained from the computational
solution of the IBVP and the dotted line indicates the asymptotic total axial velocity defined
in (7). The comparisons in Figures 10–12 show that the numerical and asymptotic results
yield qualitatively similar velocity profiles having the same number of spatial waves and the
same shape in the radial direction. However, there exist quantitative differences between the
values of numerical and asymptotic total axial velocities. These differences can be explained
by recalling that the numerical acoustic velocity solution is missing a sizeable component
associated with eigenfunction contribution to the acoustic field.
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In order to understand the differences more fully it is useful to examine the behavior of
the other velocity terms defined in (26). For example, Figure 2 shows that the numerical
and asymptotic steady solutions are nearly identical. Finally the rotational fields should be
compared.

It should be recalled that (20) shows that the unsteady vorticity created on the sidewall is
sensitive to the unsteady axial pressure gradient. Figures 4 and 13c show the numerical and
analytical acoustic axial pressure gradients, respectively, with differences due to the missing
eigenfunctions in the numerical solution. This suggests that one can expect somewhat different
rotational velocity solutions in each case.

Figures 15a–c show comparison of numerical and asymptotic unsteady rotational axial
velocity profiles at the midpoint of the cylindrical chamber for the times t = 3, t = 15
and t = 30 for the same parameter values in Figures 10–12. The dotted line indicates the
rotational axial velocity (u0V ) found from the solution of (22), and the solid line shows the
numerically found analogous unsteady rotational axial velocity (uV ) depicted previously in
Figure 8. The comparisons show that the solutions have the same qualitative behavior, includ-
ing the same number of unsteady rotational velocity waves and similar decay rates in the radial
direction. The differences in quantitative results include deviations on the sidewall (r = 1)
and differences in peak values throughout the radial variation. Eigenfunctions are observed to
have a larger effect near the sidewall than away from the boundary, where comparisons are
quite good from a quantitative perspective. This improvement in quantitative comparison is
likely due to the effects of diffusion, as defined in (22), that smooth out the radial gradient
on the short radial scale as the fluid is convected into the cylinder and downstream. These
results suggest that, even with a missing eigenfunction response, one can obtain a reasonably
accurate prediction of the characteristics of the rotational field. Of course, improvements can
be expected with a more accurate computational result.

6. Conclusions

The present computational and related asymptotic results show that:
(1) The small-time solutions to our initial-boundary-value problem are characterized by a

well-defined front that separates the fluid region adjacent to the sidewall containing intense
transient vorticity from the relatively weaker rotational flow (nearly the Culick solution in
Figure 2) in the interior of the cylinder,

(2) Longer-time solutions show that the intense vorticity created at the injection surface
is transported out into the cylinder core by the radial component of velocity. For sufficiently
larger times transient vorticity fills the cylinder.

(3) The amplitude of the vorticity calculated from the initial-boundary-value problem is
larger by a factor up to 100 than that considered in more traditional stability-based studies.
In addition, for the larger disturbances considered in this work nonlinear axial convection is
observed to affect the downstream distribution of vorticity [16, 17]. Results obtained from
asymptotic analysis shows that the axial shear stress on the sidewall is O(1/M), which can be
quite significant.

(4) A reduction in the Mach number leads to more spatial oscillations in the radial variation
of the flow velocity, implying smaller-length-scale phenomena. Spatial resolution of these
rapid variations require a considerable number of radial grid points, particularly those away
from the sidewall.
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Figure 13. (a) Pressure time history found from (15), (b) Comparison of numerical P (solid line) and asymptotic
P0 (dotted line) found from (15) by considering only the forced mode, (c) axial pressure gradient time history
obtained from Equation (15) at x = 0·5 for the same parameters in Figure 6.
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Figure 14. (a) The time history of the planar part u0P of the total axial flow velocity found from Equation (15)
(dotted line) and uP extracted from full numerical calculations (solid line), (b) The time history of u0P found
from Equation (15) by considering only the forced mode (dotted line) and numerical up in Figure 14a (solid line)
at x = 0·5 for the same parameters in Figure 6.

(5) Acoustic eigenvalue responses that should be present in solutions to the defined math-
ematical models used previously [8, 16, 17] and the present work are not resolved by the
numerical methods. However, in the present study eigenfunctions are present for sufficiently
short times. (Figures 4 and 13c)

(6) The comparison of the numerically obtained pressure transient with the purely forced
(quasi-steady) mode in the analytical acoustic solution (Equation 15) is excellent in terms of
amplitude and frequency (Figure 13b).

(7) The computations in the present work are more accurate than those reported earlier
[1, 2, 5, 6] because the analytically derived scaling is used to determine grid size and distri-
bution. The present choices assure that the short wavelength processes in the radial spatial
distributions, predicted by the analysis, are adequately resolved.

(8) The comparison between the nonlinear numerical results for rotational velocity and
those obtained from the nonlinear asymptotic analysis is quite reasonable in the context of the
differing acoustic pressure gradient transients obtained from each method.
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Figure 15. Comparison of the full numerical uV (solid line) with the analytically found uV from Equation (22)
(dotted line) (a) at t = 3·00, (b) at t = 15·00 and (c) at t = 30·00 for the same parameters in Figure 8.
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